Colormaps
Figure objects such as CurtainFigure accept matplotlib.colors.Colormap objects or a name string, which then retrieves the appropriate colormap from matplotlib, plotly, cmcrameri, and from a list of pre-defined colormaps for earthcarekit:

Advanced
In case you want to get an matplotlib.Colormap object and call by name, use the get_cmap function.
All pre-defined colour tables for earthcarekit are also listed in earthcarekit.cmaps.
Categorical colormaps
For classification data (e.g., ATLID target classification) categorical colormaps can be created using the Cmap.to_categorical method:
cmap = eck.get_cmap("viridis")
values_to_labels = {
0: "class 1",
1: "class 2",
100: "class 3",
-1: "missing data",
}
cmap_categorical = cmap.to_categorical(values_to_labels)
# Example plot
eck.CurtainFigure().plot(
values=[[-1, 0, 1, 100],
[ 1, -1, 1, 0],
[ 0, 1, -1, 1]],
height=[5e3,15e3, 25e3, 35e3],
time=["20250101", "20250201", "20250301"],
cmap=cmap_categorical,
)
Shifting the midpoint
See shift_cmap.
def plot_cmap(c):
import matplotlib.pyplot as plt
_, ax = plt.subplots(figsize=(6, 0.5))
plt.colorbar(plt.cm.ScalarMappable(cmap=c), cax=ax, orientation="horizontal", label=c.name)
plt.show()
cmap = eck.get_cmap("RdBu")
plot_cmap(cmap)
cmap_shifted = eck.shift_cmap(cmap, midpoint=0.2, name="RdBu_shifted")
plot_cmap(cmap_shifted)